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You MUST show your work to receive any credit. This part of the exam is worth 100 points.
Each problem is worth 6 points unless otherwise specified.

Solve the problem ﬁ
1) A private shipping company will accept a box for domestic shipment only if the sum of its length 1) i3 b
and girth (distance around) does not exceed 120 in. Suppose you want to mail a box with square
sides so that its dimensions are h by h by w and it's girth is 2h + 2w. What dimensions will give the

box its largest volume?
A) 20in. x 20 in. x 40 in. \ B)—S——m x——m x 20 in.

C) 40 in. x 20 in. x 40 in. D) 20 in. x 20 in. x 100 in.
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2) Atnoon, ship A was 13 nautical miles due north of ship B. Ship A was sailing south at 13 knots 2) @
(nautical miles per hour; a nautical mile is 2000 yards) and continued to do so all day. Ship B was
sailing east at 6 knots and continued to do so all day. The visibility was 5 nautical miles. Did the
ships ever sight each other? (12 points)
A) Yes. They were within 4 nautical miles of each other

B) No. The closest they ever got to each other was 6.4 nautical miles
W

ever got to each other was 5.4 nautical miles. |
D) Yes. They were within 3 nautical miles of each other
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Use I'Hopital's Rule to ev, e the limit. @
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Use I'Hopital's Rule to evaluate the limit
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Find the limit.
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Find the absolute extreme values of the function on the interval. (6 points)
8) g0x) = -x2+ 11x - 306 < x 55 54X £6 8)

A) absolute maximum is - atx = 121-; absolute minimum is 0 at 5 and 0 atx =6

solute maximum is —i— atx = %; absolute minimum isQ0 at5and Qatx=6

C) absolute maximum is -}I atx = E,‘ absolute minimumisOat5andOatx=6
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Find the largest open interval where the function is changing as requested. (6 points)
9) Increasing y = (x2 - 9)2
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Determine where the given function is concave up and where it is concave down. (6 points)
10) £(x) = 2x3 + 9x2 + 12x
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Use the graph of the function f(x) to locate the local extrema and identify the intervals where the function is concave up
and concave down. (4 points)
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Suppose that the function with the given graph is not f(x), but £'(x). Find the locations of all extrema, and tell whether
each extremum is a relative maximum or minimum

. (4 bonus points) — Challenge Problem D
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