Name	VFY	
Date:	1007	

You MUST show your work to receive any credit. This part of the exam is worth 100 points. Each problem is worth 6 points unless otherwise specified.

Solve the problem.

1) A private shipping company will accept a box for domestic shipment only if the sum of its length and girth (distance around) does not exceed 120 in. Suppose you want to mail a box with square sides so that its dimensions are h by h by w and it's girth is 2h + 2w. What dimensions will give the box its largest volume?

- A) 20 in. × 20 in. × 40 in.
- C) 40 in. × 20 in. × 40 in.

B)
$$\frac{80}{3}$$
 in. $\times \frac{80}{3}$ in. $\times 20$ in.

D) 20 in. × 20 in. × 100 in.

$$V = h \cdot h \cdot w = h^{2} w$$

 $2h + 3w + 3h = 120$
 $2w + 3h = 120 - 3h$
 $w = 60 - 3h$

$$V = h \cdot h \cdot (60 - 3h)$$

$$V = (60h^{2} - 3h^{3})$$

$$V' = 120h - 9h^{2}$$

$$V' = 0 \quad h(120 - 9h) = 0$$

$$h = 0 \quad 120 - 9h = 0$$

$$120 = 9h$$

$$240 = 9h$$
 $240 = 9h$
 $9 = 80 = h$
 $9 = 80 = h$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$
 $3 = 80$

- 2) At noon, ship A was 13 nautical miles due north of ship B. Ship A was sailing south at 13 knots (nautical miles per hour; a nautical mile is 2000 yards) and continued to do so all day. Ship B was sailing east at 6 knots and continued to do so all day. The visibility was 5 nautical miles. Did the ships ever sight each other? (12 points)
 - A) Yes. They were within 4 nautical miles of each other.
 - B) No. The closest they ever got to each other was 6.4 nautical miles.
 - C) No. The closest they ever got to each other was 5.4 nautical miles.
 - D) Yes. They were within 3 nautical miles of each other.

$$Z^{2} = (13-13t)^{2} + (0+6t)^{2}$$

$$Z^{3} = 169 - 338t + 169t^{2} + 36t^{2}$$

$$Z^{2} = 205t^{2} - 338t + 169$$

$$Z = (205t^{2} - 338t + 169)^{1/2}$$

$$Z' = \frac{1}{2}(205t^{3} - 338, t + 169)$$
 (410t - 26)

$$Z = \frac{410 t - 338}{2(205 + 3 - 338)^{1/2}}$$

$$z'=0$$
 $a(a05+a-338+169)$

$$t = 338 = 0.80 \text{ hrs}$$

$$z' = 410 \pm -338$$

 $z' = 0$ $2(a05 \pm a - 338 \pm 169)^{1/2}$
 $z' = 0$ $2(a05 \pm a - 338 \pm 169)^{1/2}$
 $z' = 0$ $z' = 0$ $z' = 0$ $z' = 0$
 $z' = 0$ $z' = 0$ $z' = 0$
 $z' = 0$ $z' = 0$ $z' = 0$
 $z' = 0$ $z' = 0$ $z' = 0$
 $z' = 0$ $z' = 0$ $z' = 0$
 $z' = 0$ $z' = 0$ $z' = 0$
 $z' = 0$ $z' = 0$ $z' = 0$
 $z' = 0$ $z' = 0$ $z' = 0$
 $z' = 0$ $z' = 0$

$$\frac{2^{2} = (13 - 13(0.80))^{2} + (6(0.80))^{2} = 29.68}{2 = \sqrt{29.68} = 5.44 \text{ naufical miles 2 minimum}}$$

Use l'Hopital's Rule to evaluate the limit.

3)
$$\lim_{x \to -\infty} \frac{16 + 2x - 19x^2}{3 - 8x - 7x^2}$$

$$\frac{1}{1000} = \frac{1}{1000} = \frac{1$$

$$\frac{-38}{-14} = \frac{16}{7}$$

4)
$$\lim_{x \to \infty} \left(\sqrt{x^2 + 4x} - x \right)$$

$$\begin{array}{c} X \to \infty \\ (\sqrt{X_5 + 4^{\times} + X}) \\ \end{array}$$

$$= \lim_{x \to \infty} \frac{x^2 + 4x - x^2}{\sqrt{x^2 + 4x} + x} = \lim_{x \to \infty} \frac{4x}{\sqrt{x^2 + 4x} + x}$$

$$\frac{1}{2} \lim_{x \to \infty} \frac{1}{2(x^2 + 4x)^{-\frac{1}{2}}(2x + 4x) + 1} = \lim_{x \to \infty} \frac{1}{2x + 4x} + \lim_{x \to \infty} \frac{1}{2\sqrt{x^2 + 4x}}$$

$$\lambda = \frac{4}{2x+4}$$
 $\lambda = \frac{4}{2\sqrt{x^2+4x}}$

$$= \lim_{\chi \to \infty} \frac{(4.2\sqrt{\chi^2}+4\chi)}{(2\chi^2+4\chi)} \to \lim_{\chi \to \infty} \frac{8\chi}{4\chi} = 2$$

$$5) \lim_{X \to \infty} x \sin \frac{14}{x}$$

5)
$$\lim_{x\to\infty} x \sin\frac{14}{x}$$

$$\frac{\sin \frac{14}{x}}{1+x} = \frac{14x}{1+x}$$

$$=$$
 $\frac{1}{x}$ $\frac{-x^{\circ}}{1}$ \cos

$$\frac{L}{x \rightarrow \infty} \frac{\cos(\frac{14}{x})(-14x^{-2})}{-x^{-2}}$$

$$= \lim_{x \to \infty} \frac{\cos\left(\frac{14}{x}\right)\left(-\frac{14}{x^2}\right)}{\frac{-1}{x^2}}$$

Use l'Hopital's Rule to evaluate the limit,

6)
$$\lim_{x \to 0} \frac{\sin 2x}{\tan 8x}$$

$$\frac{2\cos 2x}{8\sec^2 2x} = \frac{2\cos(0)}{8\sec^2(0)} = \frac{2(1)}{8(1)}$$

Find the limit.

7)
$$\lim_{x \to \infty} \left[1 + \frac{2}{x^2} \right]$$

the limit.

7)
$$\lim_{x \to \infty} \left(1 + \frac{2}{x^2} \right)^x$$

Form

$$y = \int_{X \to \infty} \left(1 + \frac{2}{x^2}\right)^{x}$$

$$\ln y = \ln \ln \left(1 + \frac{2}{x^2}\right)^{x}$$

$$J_{\text{my}} = J_{\text{m}} \times J_{\text{m}} \left(1 + \frac{2}{x^{2}}\right)$$

$$Jmy = Jm \frac{0.00}{x - 1}$$

$$\frac{Jm(1 + 2x^{-2})}{x^{-1}}$$

$$hy = \int_{X \to \infty} \frac{1}{1 + \frac{2}{x^{2}}} \frac{1}{-x^{2}}$$

$$ln y = \frac{1}{x^{3}} = \frac{-4}{x^{3}}$$

Find the absolute extreme values of the function on the interval. (6 points)

8)
$$g(x) = -x^2 + 11x - 30$$
, $6 \le x \le 5$

A) absolute maximum is $\frac{241}{4}$ at $x = \frac{11}{2}$; absolute minimum is 0 at 5 and 0 at x = 6

B) absolute maximum is
$$\frac{1}{4}$$
 at $x = \frac{11}{2}$; absolute minimum is 0 at 5 and 0 at $x = 6$

C) absolute maximum is
$$\frac{1}{4}$$
 at $x = \frac{13}{2}$; absolute minimum is 0 at 5 and 0 at $x = 6$

D) absolute maximum is
$$\frac{5}{4}$$
 at $x = \frac{13}{2}$; absolute minimum is 0 at 5 and 0 at $x = 6$

$$g'(x) = -ax + 11$$

g'(x) = 0 g'(x) undefined (none)

$$-2x + 11 = 0$$

Find the largest open interval where the function is changing as requested. (6 points)

9) Increasing $y = (x^2 - 9)^2$

$$y = (x^{2}-9)^{2}$$

 $y' = 2(x^{2}-9)(2x)$
 $y' = 4x(x+3)(x-3)$

Determine where the given function is concave up and where it is concave down. (6 points)

10)
$$f(x) = 2x^3 + 9x^2 + 12x$$

$$f(x) = 2x^3 + 9x^2 + 2x$$

 $f'(x) = 6x^2 + 18x + 2$

Concave down
$$(-\infty, -\frac{3}{2})$$
Concave up
$$(-\frac{3}{2}, \infty)$$

$$12x = -18$$
 $x = -18$ $x = -18$ $x = -18$

$$f''(-1) = -$$

$$x = -\frac{18}{12}$$

Use the graph of the function f(x) to locate the local extrema and identify the intervals where the function is concave up and concave down. (4 points)

min
$$X = 2$$

max $X = 0$
concave up

 $(1,\infty)$ concave (-00, 1)

Suppose that the function with the given graph is not f(x), but f'(x). Find the locations of all extrema, and tell whether each extremum is a relative maximum or minimum. (4 bonus points) -- Challenge Problem

12)

- A) Relative minima at -3 and 1; relative maximum at -1
- B) Relative maximum at 0; relative minimum at -2
- C) No relative extrema
- D) Relative maxima at -3 and 1; relative minimum at -1

13) Given
$$f(x) = x^3$$
 $f'(x) = x^2(x+3)$ $(x+1)^3$

and
$$f''(x) = Gx$$

$$(x+1)^{4}$$

20 points

- (a) Find all intercepts (4 points)
 (b) Find all asymptotes (4 points)
 (c) First derivative analysis (4 points)
 (d) Second derivative analysis (4 points)
 (e) Sketch a graph of the function (4 points)

(13)
$$f(x) = x^3$$
 $f'(x) = x^2(x+3)$ $f''(x) = 6x$
 $(x+1)^2$ $(x+1)^3$ $(x+1)^4$

(2) Intercepts (original function) $f(x) = x^3$
 $(x+1)^4$

(13) $f(x) = x^3$ $(x+1)^4$

(14) $f'(x) = 6x$
 $f''(x) = 6x$
 f''

Other (long division)
$$y = x - a$$

$$\begin{array}{r}
-(-3x_{9}-4x-9) \\
-(x_{3}+9x_{9}+x) \\
-(x_{3}+9x_{9}+x)
\end{array}$$

first derivative analysis
$$f'(x) = x^{3}(x+3)$$

 $f'(x) = 0$ $f'(x)$ undef
 $f'(x) = 0$ $f'(x)$ $f'(x$

Summary Results for #13

- (a) intercepts (0,0)
- (b) asymptotes VA HA oblique X=-1 none y=x-2
- (d) IP (| +)
 (0,07) (VA) (IP)
- (a) (-3, -6.75)